
MATH 4060 MIDTERM EXAM (FALL 2016)

Name: Student ID:

Answer all questions. Write your answers on this question paper. No books, notes or
calculators are allowed. Time allowed: 105 minutes.

1. Weierstrass’s theorem states that a continuous function on [−1, 1] can be uniformly approximated
by polynomials there. Let D = {z ∈ C : |z| ≤ 1} be the closed unit disc centered at the origin.
Can every continuous function on D be approximated uniformly on D by polynomials in the
complex variable z? Explain your answer. (10 points)

Solution.

• No.

• Polynomials in z are entire functions of z, and in particular holomorphic functions on D.

• If a sequence of holomorphic functions on D converges uniformly on D, then the limit
function is holomorphic on D.

• However, there are many functions that are continuous on D, but not holomorphic on D.

• An example is z. Such cannot be approximated uniformly on D by polynomials in z.
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2. (a) Let

f(x) =
1

1 + x2
for all x ∈ R.

Using contour integrals, show that its Fourier transform is

f̂(ξ) = πe−2π|ξ|,

where f̂ is defined by the formula f̂(ξ) =
∫∞
−∞ f(x)e−2πixξdx for all ξ ∈ R. (16 points)

Solution.

• Given ξ ∈ R, let F (z) =
1

1 + z2
e−2πizξ.

• Suppose ξ ≤ 0. For R > 1, let γR be the contour given by the straight line joining −R
to R, and CR be the contour given by the semi-circle centered at 0 and of radius R,
joining R to −R through the upper half plane.

• The only singularity of F in the region enclosed by γR and CR is at z = i.

• Writing F (z) =
e−2πizξ/(z + i)

z − i
, the residue of F at z = i is

e2πξ

2i
.

• Cauchy integral formula shows that
1

2πi

∫
γR+CR

F (z)dz =
e2πξ

2i
, hence∫ R

−R
f(x)e−2πixξdx = πe−2π|ξ| −

∫
CR

1

1 + z2
e−2πizξdz.

• If R > 1, then for z ∈ CR, ∣∣∣∣ 1

1 + z2

∣∣∣∣ ≤ 1

R2 − 1
,

whereas
|e−2πizξ| = e2π(Im z)ξ ≤ 1 if ξ ≤ 0.

• Hence ∣∣∣∣∫
CR

1

1 + z2
e−2πizξdz

∣∣∣∣ ≤ πR

R2 − 1
→ 0

as R→ +∞.

• This shows ∫ ∞
−∞

f(x)e−2πixξdx = πe−2π|ξ|

if ξ ≤ 0. Similarly, if ξ ≥ 0, instead of the upper semi-circle contour CR, consider
the contour given by the semi-circle centered at 0 and of radius R, joining R to −R
through the lower half plane. Then a similar calculation shows that the same identity
holds; indeed, the residue one picks up at z = −i is then e−2πξ/(2i), and for z in

this lower semi-circular contour, we have |e−2πizξ| = e2π(Im z)ξ ≤ 1 if ξ ≥ 0. One then
finishes the proof as before. (Alternatively, just observe that f(x) is an even function,
and thus its Fourier transform is also even; the result for ξ ≤ 0 then implies also the
result for ξ ≥ 0.)



(b) (i) State (without proof) Poisson summation formula. You should state clearly a set of
assumptions under which the conclusion of the theorem holds.

(ii) Using the version of Poisson summation formula you stated in part (i), evaluate the
sum

∞∑
n=1

1

1 + n2
.

(14 points)

Solution.

• The Poisson summation formula says if f(x) admits a holomorphic extension f(z) to the
horizontal strip {z ∈ C : |Im z| < a} for some a > 0, and if the extension satisfies

|f(x+ iy)| ≤ A

1 + x2
for all x, y ∈ R with |y| < a,

then
∞∑

n=−∞
f(n) =

∞∑
n=−∞

f̂(n),

where f̂ is the Fourier transform of f defined by f̂(ξ) =
∫∞
−∞ f(x)e−2πixξdx.

• The Poisson formula above applies to f(x) =
1

1 + x2
, since it admits a holomorphic exten-

sion f(z) =
1

1 + z2
to the strip {|Im z| < 1/2}, and

|f(x+ iy)| ≤

{
A if |x| ≤ 2, |y| < 1/2

Ax−2 if |x| > 2, |y| < 1/2
.

• Thus
∞∑

n=−∞

1

1 + n2
=

∞∑
n=−∞

πe−2π|n|,

i.e.

1 + 2

∞∑
n=1

1

1 + n2
= π

(
1 + 2

∞∑
n=1

e−2πn

)
.

• We sum the geometric series on the right hand side:
∞∑
n=1

e−2πn =
e−2π

1− e−2π
.

• Thus
∞∑
n=1

1

1 + n2
=
π

2

(
1 +

2e−2π

1− e−2π

)
− 1

2

=
π

2

(
1 + e−2π

1− e−2π

)
− 1

2

=
π coth(π)− 1

2
or

π − 1

2
+

πe−2π

1− e−2π
.



3. Suppose k ∈ N. Let Ek be the canonical factor, defined by

Ek(z) = (1− z) exp

 k∑
j=1

zj

j

 for z ∈ C.

(a) Show that

|Ek(z)| ≥ e−2|z|
k+1

for all |z| ≤ 1

2
.

(12 points)

Solution.

• Suppose z ∈ C and |z| ≤ 1/2. Then

1− z = exp(Log (1− z))
where Log is the principal branch of the logarithm.

• Hence

Log (1− z) = −
∞∑
j=1

zj

j
.

• This gives

Ek(z) = exp

− ∞∑
j=k+1

zj

j

 .

• But

Re

 ∞∑
j=k+1

zj

j

 ≤
∣∣∣∣∣∣
∞∑

j=k+1

zj

j

∣∣∣∣∣∣
≤

∞∑
j=k+1

|z|j

j

≤
∞∑

j=k+1

|z|j

≤ |z|k+1
∞∑
j=0

1

2j

= 2|z|k+1

• Thus

|Ek(z)| = exp

−Re

 ∞∑
j=k+1

zj

j

 ≥ e−2|z|k+1
.



(b) Show that if z ∈ C, and {an}∞n=1 is a sequence of complex numbers satisfying both conditions
below:

• |an| ≥ 2|z| for all n ∈ N,

• σ :=

∞∑
n=1

1

|an|k
<∞,

then ∣∣∣∣∣
∞∏
n=1

Ek

(
z

an

)∣∣∣∣∣ ≥ e−σ|z|k .
(You do not need to prove the convergence of the infinite product on the left hand side.)
(8 points)

Solution.

• Suppose |an| ≥ 2|z| for all n ∈ N. Then |z/an| ≤ 1/2 for all n.

• Thus for any positive integer N , we have∣∣∣∣∣
N∏
n=1

Ek

(
z

an

)∣∣∣∣∣ ≥
N∏
n=1

exp

(
−2

∣∣∣∣ zan
∣∣∣∣k+1

)
= exp

(
−2

N∑
n=1

∣∣∣∣ zan
∣∣∣∣k+1

)
• But

N∑
n=1

∣∣∣∣ zan
∣∣∣∣k+1

≤ 1

2

N∑
n=1

∣∣∣∣ zan
∣∣∣∣k =

σ|z|k

2
.

• Thus ∣∣∣∣∣
N∏
n=1

Ek

(
z

an

)∣∣∣∣∣ ≥ e−σ|z|k .
This is true for any positive integer N . Letting N → +∞ then yields the result.



4. For each of the following statements, determine whether it is true or false. If it is true, give a
proof; if it is false, show that it is false.

(a) The infinite product
∞∏
n=1

(
1− z

n

)
converges for all z ∈ C, and defines an entire function that vanishes to order 1 at all the
positive integers. (10 points)

Solution.

• False.

• The infinite product does not converge at z = −1.

• If z = −1, then for any positive integer N , we have

N∏
n=1

(
1− z

n

)
=

N∏
n=1

(
1 +

1

n

)
=

N∏
n=1

n+ 1

n
= N + 1,

which diverges as N → +∞.

• Indeed, the infinite product fails to converge for any z /∈ N∪{0}. This follows from the
following fact (see Stein and Shakarchi, Complex Analysis, Chapter 5, Exercise 7(a)):

Suppose (i) an 6= −1 for all n ∈ N, (ii)

∞∑
n=1

|an|2 converges, and (iii)

∞∑
n=1

an diverges.

Then
∞∏
n=1

(1 + an) diverges.

It suffices to apply this fact to an := z/n.



(b) If P is a monic polynomial (i.e. a polynomial of the form zn + cn−1z
n−1 + · · ·+ c0 for some

n ∈ N ∪ {0} and some coefficients c0, c1, . . . , cn−1 ∈ C) and P (z) 6= 0 whenever |z| ≥ 1, then∫ 2π

0
log |P (eit)|dt = 0.

(14 points)

Solution.

• True.

• Since P is monic and all zeroes of P are inside the open unit disc D, we may write

P (z) = (z − a1)(z − a2) . . . (z − an)

for some a1, . . . , an ∈ D.

• Now ∫ 2π

0
log |P (eit)|dt =

n∑
k=1

∫ 2π

0
log |eit − ak|dt.

• So it suffices to show that∫ 2π

0
log |eit − a|dt = 0

for all a ∈ D.

• This is clear if a = 0.

• If a ∈ D and a 6= 0, then we apply Jensen’s formula to p(z) := z − a. Then we get∫ 2π

0
log |eit − a|dt =

∫ 2π

0
log |p(eit)|dt = 2π(log |p(0)| − log |a|) = 0

as well, as desired.

• Alternatively, consider the function Q(z) := znP (1/z), defined for z 6= 0. Then since
P is monic, we have

lim
z→0

Q(z) = 1,

so we may extend Q to an entire function. Now Q has no zeroes on D. Thus log |Q(z)| is
harmonic on a neighborhood of D, and the mean-value property for harmonic functions
shows that ∫ 2π

0
log |Q(eit)|dt = 2π log |Q(0)| = 0.

(We could also invoke Jensen’s formula here to obtain the same conclusion.) Since

|Q(eit)| = |P (e−it)|, and
∫ 2π
0 log |P (eit)|dt =

∫ 2π
0 log |P (e−it)|dt by a change of variable

t 7→ 2π − t, the desired result follows.



5. Suppose f is entire, not identically zero, and each zero of f occurs with an even multiplicity.
Show that there exists an entire function g such that g2 = f . (16 points)

Solution.

• Let Λ = {w ∈ C : f(w) = 0} be the zero set of f .

• Since f is not identically zero, Λ has no accumulation points.

• If w ∈ Λ, then f vanishes to order 2mw at w for some positive integer mw.

• Weierstrass’s theorem guarantees the existence of some entire function h, such that the
following holds:

– if w ∈ Λ, then h vanishes to order mw at w, while

– if w ∈ C \ Λ, then h does not vanish at w.

• The function f/h2 is then entire, and has no zeroes at all.

• Since C is simply connected, one can write f/h2 as eH for some entire function H.

• Thus f = eHh2, and it follows that f = g2 if g := eH/2h. Such g is obviously entire.

End of paper


